The aims of this study were to characterize the antifungal activity of amphotericin B against Candida auris in a static in vitro system and to evaluate different dosing schedules and MIC scenarios by means of semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modelling and simulation. A two-compartment model consisting of a drug-susceptible and a drug-resistant subpopulation successfully characterized the time-kill data and a modified Emax sigmoidal model best described the effect of the drug. The model incorporated growth rate constants for both subpopulations, a death rate constant and a transfer constant between both compartments. Additionally, the model included a parameter to account for the delay in growth in the absence or presence of the drug. Amphotericin B displayed a concentration-dependent fungicidal activity. The developed PK/PD model was able to characterize properly the antifungal activity of amphotericin B against C. auris. Finally, simulation analysis revealed that none of the simulated standard dosing scenarios of 0.6, 1 and 1.5 mg/kg/day over a week treatment showed successful activity against C. auris infection. Simulations also pointed out that an MIC of 1 mg/L would be linked to treatment failure for C. auris invasive infections and therefore, the resistance rate to amphotericin B may be higher than previously reported.
Loading....